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Numerical analysis of the spatial range of the Kondo effect
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The spatial length of the Kondo screening is still a controversial issue related to Kondo physics. While
renormalization-group and Bethe-Ansatz solutions have provided detailed information about the thermodynam-
ics of magnetic impurities, they are insufficient to study the effect on the surrounding electrons, i.e., the spatial
range of the correlations created by the Kondo effect between the localized magnetic moment and the con-
duction electrons. The objective of this work is to present a quantitative way of measuring the extension of
these correlations by studying their effect directly on the local density of states (LDOS) at arbitrary distances
from the impurity. The numerical techniques used, the embedded cluster approximation, the finite-U slave
bosons, and numerical renormalization group, calculate the Green’s functions in real space. With this infor-
mation, one can calculate how the local density of states away from the impurity is modified by its presence,
below and above the Kondo temperature, and then estimate the range of the disturbances in the noninteracting
Fermi sea due to the Kondo effect, and how it changes with the Kondo temperature Tk. The results obtained
agree with results obtained through spin-spin correlations, showing that the LDOS captures the phenomenol-

ogy of the Kondo cloud as well.
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I. INTRODUCTION

The physics of isolated impurities inside a Fermi sea has
received considerable attention since it was experimentally
shown that nanosystems composed by quantum dots display
Kondo phenomena, very clearly reflected in its transport
properties.! One signature of this effect is a narrow reso-
nance, at the Fermi energy, in the local density of states
(LDOS) of the impurity, with a width on the order of a char-
acteristic energy, the so-called Kondo temperature, T. The
transport properties of a nanoscopic structure in this regime
are substantially affected by the Kondo resonance, as it cre-
ates an extra channel at the Fermi level through which the
electrons can propagate. The energy kgzT is also associated
with antiferromagnetic correlations between the impurity and
the conduction-electron spins in its neighborhood, favoring
the emergence of a singlet ground state. These spins, local-
ized in the impurity’s vicinity, constitute a screening cloud of
the localized impurity spin, known as the Kondo cloud.
While most of the physics involved in this important effect is
by now well established, the nature, structure, and extension
of the Kondo cloud, and even its existence, is still, to some
extent, controversial.>> Theoretically, it is thought to be a
crucial ingredient in helping to understand, for instance, the
interaction between two nearby impurities, when one of them
is sitting within the region of influence of the Kondo cloud of
the other. From the experimental point of view, although it is
thought that the extension of this characteristic cloud can
reach very large values,” the properties of a system of impu-
rities in metals seem to depend linear on the impurity con-
centration. This seems to indicate that the impurities do not
see each other, although, based on the expected Kondo-cloud
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extension, they should. Moreover, there has not been any
clear experimental evidence of it existence, with the excep-
tion of the electronic conductance measurements in quantum
corrals.* For instance, in an ellipsoidal quantum corral, a
Kondo peak produced by a magnetic atom located at one
focus of the ellipse has an experimentally detectable spectral
response in the other focus. This indicates a very peculiarly
structured Kondo cloud, which, through the use of an scan-
ning tunneling microscope (STM), can be experimentally
analyzed.

The Kondo-cloud length can be estimated by considering
that the mean life of the Kondo quasiparticles are related to
the time scale ¢ =7 /kzTx. Assuming that these quasiparti-
cles propagate with the Fermi velocity vy, then the Kondo
screening length can be related to the quantity,”

. ﬁUF
kBTK.

Rx (1)

Obviously, since all electrons whose energies fall within the
Kondo peak will participate in the formation of the Kondo
cloud, the quantity vy is not well defined. Moreover, one
may expect that the quasiparticles do not propagate with the
bulk v but with a renormalized v*, given by the presence of
the impurity. From heavy fermion theory, we can estimate
vi=kp/m*, where m* is the effective mass of the
quasiparticle.’ Therefore, Eq. (1) should provide inaccurate
results for the screening length Rgx. However, it should be
expected to give the correct dependence with Tx and some
plausible order of magnitude for its length.

From the theoretical point of view, this problem has been
analyzed using different approaches.®!! The study of spin
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properties, through the local susceptibility or the spatial spin-
correlation function, has given significant contributions to
the understanding of this phenomenon.®!'>!> More closely
related to our approach, the analysis of the conductance of a
quantum dot embedded in a finite wire> or the persistent
currents in a finite ring,® using renormalization arguments or
density-matrix renormalization-group (DMRG) calculations,
respectively, were proposed as a way of determining the
Kondo cloud, as well.

More recently, a variational approach was proposed to
study the propagation, from the impurity, of the local hole
density.'* In this work, it was possible to show that, in two
and three dimensions, the extension of the Kondo cloud is on
the order of a few Fermi wavelengths only, due to angular
dispersion effects, such that Ry does not play a significant
role in the physics of a system of impurities in either of these
dimensions. This seems to explain the situation from the ex-
perimental point of view (as mentioned above), and thus the
irrelevance of the Kondo cloud in most of the real systems
studied. However, for one-dimensional (1D) systems,'* the
impurity-impurity interaction should be determined by the
Kondo-cloud length Ryg. This will have important conse-
quences to the conductance properties, and therefore will
have implications to the design of quantum-dot-integrated
nanoscopic systems.

Motivated by this situation, we study the Kondo cloud in
a one-dimensional system, focusing our attention on its elec-
tronic properties. The study of the propagation of the Kondo
resonance, located at the vicinity of the Fermi energy, will
shine light, for instance, into the transport properties of a
quantum dot connected to leads where the distance from the
dot to an STM tip is changed in a controlled and continuous
way.!> This will be experimentally similar to the transport
properties studies of a system formed by a magnetic atom
located in one focus of an elliptical quantum corral, as men-
tioned above, and can be experimentally implemented for a
quantum dot connected into an infinite wire.

In the present work, we discuss the spatial behavior of the
Kondo cloud by alternative means in an infinite one-
dimensional system. Indeed, to estimate the cloud range,
three different numerical techniques are used to track the
effects of the impurity over the LDOS far away from the
impurity. These effects are calculated above and below the
Kondo temperature Ty, and their difference is used as a fin-
ger print of the extension of the Kondo cloud. The calcula-
tions are carried out using the embedded cluster approxima-
tion (ECA),'®!7 the finite-U slave-bosons mean-field
approximation ~ (FUSBMF),'”®  and the  numerical
renormalization-group (NRG) method.?"

The paper is organized as follows: in the next section
(Sec. 1), we present the model used and the methods to solve
it. In Sec. III, we briefly describe the behavior of the LDOS,
in real space, within the metal lead and define the function
used to estimate Rg. In Sec. IV, the numerical results calcu-
lated using ECA, FUSBMF, and NRG are discussed and
compared. In the last section, we present our conclusions.
Finally, in the Appendix, we compare our approach and re-
sults with those presented in Ref. 8.
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FIG. 1. (Color online) Schematics of the system used to deter-
mine the spatial extension of the Kondo cloud. The ED cluster (with
a variable number of sites L+ 1, where the QD is numbered as site
zero) is indicated by the dashed box. Note that the (integer) index
0=N<o runs over all sites inside and outside the cluster. By ap-
plying the numerical methods employed in this work, the dressed
(interacting) Green’s function for all sites in the cluster is obtained
(note that for FUSBMF and NRG, the cluster can be considered as
just the impurity—see end of Sec. I B for details). A simple equa-
tion of motion procedure allows the calculation of the GF in any
site of the semichain outside the cluster. With that, the effect of the
Kondo screening over the noninteracting Fermi sea, the so-called
Kondo cloud, can be probed at an arbitrary distance from the
impurity.

II. SYSTEM AND NUMERICAL METHODS

In this work, we analyze a system composed by one
Anderson impurity [representing, for example, a quantum
dot (QD) or an adatom in a metal surface] coupled by a
matrix element ¢’ to a band (modeled by a semi-infinite non-
interacting chain—from now on referred to as a semichain).
This system is shown schematically in Fig. 1. This figure
presents the system using the terminology appropriate for
ECA, where a finite cluster has to be defined. However, as
described in more detail below, we will show that, to calcu-
late the Green’s functions (GF) outside this cluster, when
doing FUSBMF or NRG, the same terminology can be used,
although there is no equivalent cluster definition in FUSBMF
or NRG.

As shown in Fig. 1, N is an (integer) index that numbers
the sites from zero to infinity, being the impurity [green
(gray) circle], or QD, located at site N=0. The letter L is not
an index and its meaning, related to ECA, but extended to
the other methods, is explained below in Sec. I1 A 1.

The total Hamiltonian reads

Hrp= Himp + Hyang + Hiypria (2)
with
Himp = ng Ngo+ U/ZE NaoNag> (3)
(o (o
Hbund =t 2 (CZTV(rcN+10' + c]-:/+1(TCNU') s (4)
N=lo
thbrid=t,2 (CuClo+ €1C00)s (5)

o

where ¢, creates an electron at the impurity, c},, creates an

electron at the site N of the lead, and ng,=c{,cq, is the
number operator at the impurity. The first two terms of Hp
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represent the Hamiltonian of the impurity and the noninter-
acting band, respectively, and the last term is the hybridiza-
tion between them. An important quantity for this system is
the broadening of the impurity level I'=2mt"%pq(Ep),
where p..q(Ep) is the LDOS of the first site in the semichain
at the Fermi energy Ey.

Note that the model displayed in Fig. 1 [and also denoted
in Egs. (2)—(5)], i.e., an impurity connected to one end of a
semi-infinite chain, can be obtained from a model where the
impurity is embedded into an infinite chain. Indeed, the first
model (plus, a noninteracting semi-infinite chain) is obtained
from the second through a symmetric/antisymmetric trans-
formation of the fermionic creation and annihilation opera-
tors for the sites of the infinite chain. This canonical trans-
formation has been widely used (e.g., see Ref. 17, and
references therein). In this paper, we will concentrate our
attention on the electron-hole symmetric point (V,=-U/2),
although the results can be generalized to an arbitrary value
of gate potential. As mentioned in Sec. I, we want to estimate
the extension of the Kondo cloud, and its dependence on
U/T, by analyzing the LDOS calculated through the local
GF. To calculate the GF, we will use the ECA, the FUSBMF,
and the NRG methods, which are briefly described next.

At the end of this section we will describe how the LDOS
in a site N far away from the impurity is calculated using the
equation of motion (EOM) method. Note that the EOM
method described in Sec. II B does not depend on the
method used to calculate Gj;; any of the three methods de-
scribed below provide essentially the same kind of input for
the EOM procedure.

A. Numerical methods
1. Embedded cluster approximation method

The ECA method has been developed to treat localized
impurity systems consisting of a many-body interacting re-
gion weakly coupled to noninteracting conduction bands.
The approach is based on the idea that the many-body effects
of the impurity are local in character (the Kondo cloud, for
instance). With this in mind, we proceed in three steps: first,
out of the complete system (the impurity plus a noninteract-
ing band, described by a tight-binding Hamiltonian), one iso-
lates a cluster consisting of the impurity plus their L nearest-
neighboring sites in the tight-binding semichain. This cluster,
with a variable size L+1, as it includes the impurity, is
shown in Fig. 1 by dashed lines. The first site outside the
cluster is labeled N=L+1 (remember that N is an index, as
opposed to a number of sites). Most of the many-body ef-
fects are expected to be confined to this cluster.

The second step of the method consists in exactly diago-
nalizing the cluster, using, for example, the Lanczos
method,?! and calculate all the GFs. Finally, in the third step,
the cluster is embedded into the rest of the tight-binding
semichain using a Dyson equation.'®!7

Being g, ; a cluster GF that propagates an electron from
site i to j and g;,; the GF of the first site out of the cluster
(N=L+1), the Dyson equation to calculate a dressed (by the
presence of the semichain) GF for sites inside the cluster can
be written as
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Gii=8ii+8itGri s (6)

Gri1,i= 811G (7)

Note that the hopping parameter ¢ in Eq. (6) corresponds to
the broken link shown by a dashed line in Fig. 1. This matrix
element has the same value as all the other hopping param-
eters within the chain. Properties such as conductance
through the impurity and its LDOS, for example, can be
obtained by solving this set of equations (for more details,
see Refs. 16 and 17).

2. Finite-U slave-bosons mean-field approximation

The slave-boson mean field is a method proposed origi-
nally to treat the problem when the Coulomb repulsion U is
the larger quantity. The double occupancy is excluded from
the Hilbert space with the help of projectors-bosons opera-
tors. After taking a mean field in the boson operators, the
many-body Hamiltonian is mapped into an effective one-
body Hamiltonian that can be solved exactly."”

The FUSBMF approach is an extension of the usual
slave-boson mean field in order to treat problems with finite
U.'8 The first step is to enlarge the Hilbert space by intro-

ducing a set of slave boson operators ¢é, p,, and d, and re-
placing the creation (d') and annihilation (d;,) operators in
the Hamiltonian by dszAfT and Z,d,,, respectively. Following
Kotliar and Ruckenstein,'® the operator z takes the form'®

Zo=[1=d'd=plp,1"[¢"py+ prd] X [1- &% - plps]"2.
(8)

Notice that the bosonic operators d and d' do not carry spin
index. The enlarged Hilbert space is then restricted to the
physically meaningful subspace by imposing the constraints
P=éfe+ D plp,+dd-1=0 )

o

and

Q(rz nd(r_ﬁj-fﬁ(r_;ﬂglzo' (10)

Both constraints are included into the Hamiltonian through
Lagrange multipliers AV and )\5,2). The constraint described
by Eq. (9) forces the dots to have empty, single, or double
occupancy only, while the constraint of Eq. (10) relates the
boson with the fermion occupancies. In the mean-field ap-

proximation, we replace the boson operators é, p,, and d
(and their Hermitian conjugates) by their thermodynamical
expectation values e=(&)=(é"), pUE(ﬁU>=(ﬁZ), and d
=(dy=(d"). These expectation values, plus the Lagrange
multipliers, constitute a set of parameters to be determined
by minimizing the total energy (H). In principle, it is neces-
sary to have a set of seven self-consistent parameters. Once
again, as in the infinite U case, the problem was reduced to a
one-body Hamiltonian whose energy can be minimized eas-
ily. The quantity we need to calculate is the Green’s function
at the impurity, around the Fermi level. Thus,
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Gy= (2ol idizl)), (11)

which is the propagator that carries the correct weight of the
Kondo resonance.

In Sec. II B it will be shown how to calculate the GF in
the lead’s sites using G, as an input.

3. Numerical renormalization-group approach

The NRG method was originally proposed by Wilson to
study magnetic impurity problems.?” Initially, it was applied
to the Kondo Hamiltonian, and later extended to the Ander-
son model.22 Tt can be shown that for these two models, at
low temperatures, the states close to the Fermi level (i.e.,
with the lowest-energy contribution) are the most relevant.
Therefore, perturbation theories are not the most adequate
approach to these problems. As a brief description of the
method (a full detailed description can be found in Refs. 20
and 23), we present the two main steps in the implementation
of the method.?? The first one consists in sampling the energy
interval of the conduction band by a set of logarithmically
decreasing energy intervals [xy,xy_;], defined by xy
=+ DA™Y, where A is the discretization parameter and D is
the half width of the conduction band. Then, from each in-
terval, only one representative energy value is kept (chosen
according to a well-defined criterion, see Ref. 23 for details).
The total number of representative energies, one from each
interval, results in the set of discrete energies that couples to
the impurity. After these two basic steps, the total Hamil-
tonian is mapped into a semi-infinite chain, commonly
known as Wilson-chain, where each site of the chain corre-
sponds to an energy scale in the logarithmically discretized
conduction band, with the impurity sitting at its first site. It is
important to notice that the #, couplings, between adjacent
sites n and n+1, decrease, away from the impurity, as A™"/2.
The final form for the Hamiltonian in the NRG framework is

H=lim A~V-D2q, (12)
N—oo
where
N
Hy=AW-D2 Hipp + > (dj,c()(, +He)+ 6,1cjmc,m
o n=0,0
N-1
+ 2 4(cl ot He) | (13)
n=0,0

where d,, annihilates an electron with spin o at the impurity
and c,, annihilates one at site n in the semi-infinite chain
(indexed from n=0 to N).

Note that an explicit analytical expression for ¢, in Eq.
(13) cannot be obtained for a band of arbitrary shape. For the
present problem, where a semielliptical band is used, we are
forced to calculate the 7, numerically.?* The hoppings ¢, that
define the Wilson-chain must not be confused with the ma-
trix elements 7 of the real-space chain, shown in Fig. 1. The
elements #, correspond to the band obtained after the loga-
rithmic discretization of the real-space chain. It can be shown
that when A — 1, the hoppings #, — .73

The second important step consists in solving numerically
the resulting Hamiltonian given by Eq. (12). To this end, we
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start with a system consisting of the isolated impurity, de-
scribed by the Hamiltonian H;y,,. Then, the subsequent sites
are added one by one. This procedure generates a sequence
of Hamiltonians Hy, which are solved as follows: at a given
iteration N the Hamiltonian Hy is diagonalized numerically.
The eigenvectors and the corresponding eigenvalues are ob-
tained. Next, a new site N+1 is added. This is done by en-
larging the current Hilbert space (associated to iteration N)
through a tensorial product of its elements with the states of
the site being added in the next iteration. This process results
in an exponential growth of the dimension of the Hilbert
space of successive iterations. Due to computational con-
straints, it is necessary to truncate the Hilbert space at each
iteration, after it reaches a certain size. The NRG truncation
criterion is to keep only the M lowest-energy states of Hy
(typically, M=1000), and neglect the higher-energy
spectrum.

The process of adding a single site to Hy is repeated until
the system reaches the strong-coupling fixed point. When
this fixed point is reached, Hy and Hy,, have the same
eigenvalues.?”

The sequence of iterations described above can be thought
of as a RG process. Adding one site to the chain, and obtain-
ing the new low-energy spectra, can be understood as an RG
transformation R that maps the Hamiltonian Hy into a new
Hamiltonian Hy,;=R(Hy), which has the same form as Hy,.
Once the fixed points are obtained, the static and dynamic
properties, as well as temperature effects, can be
calculated.?%?3 In particular, we are interested in the local GF
at the impurity.

At this point it is worth to remind the reader that the
information about the high-energy dynamics is not accu-
rately taken into account since the high-energy spectra is
partially neglected after the truncation.

All the NRG data presented in this work was calculated
with A=2.5 and keeping the M =1000 lower-energy states in
each iteration. To calculate the LDOS at the impurity, the
delta functions were broadened using logarithmic Gaussians
with a b=0.6 factor (see Ref. 23).

Finally, we want to stress, once again, the difference be-
tween the real-space semi-infinite chain and the Wilson-
chain. The first one, shown in Fig. 1, has all the hopping
terms equal to z. The Wilson-chain is just used to calculate
the GF at the impurity, and it is obtained after the discreti-
zation of the real-space chain. With the impurity propagator,
obtained from NRG, the LDOS at any site of the real-space
chain can be calculated, as explained below.

B. LDOS away from the impurity: Equation of motion

In this section, we will explain how to calculate the
LDOS at any site of the semichain, which models the elec-
tron reservoir. Note that, for all numerical methods used in
this work, once the dressed GF is known at the impurity
(and, in the case of ECA, for all the other sites of the cluster),
a procedure based on the construction of a Dyson equation,
through the use of a sequence of equation of motion, can
yield the dressed GF for any site in the tight-binding semi-
chain, no matter how far away from the impurity. This can be
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most easily understood in the case of ECA, as this idea is
built into the very core of the method. Indeed, ECA allows us
to calculate not just the LDOS in all the sites of the cluster
but also in all the sites in the rest of the semi-infinite tight-
binding chain used to represent the lead. An important fact
that we want to remark regarding ECA is that the embedding
procedure results in a feedback of the leads into the central
region but also reciprocally. The physics under study does
not need to be restricted to entirely occurring within the ex-
actly solved region. I.e., many-body effects taken into ac-
count exactly inside the exactly diagonalized (ED) cluster are
propagated, by the Dyson equation, into the electron reser-
voir (the semichain), which now does not have anymore the
LDOS of a noninteracting system. It is important to remark,
as will be clearly explained shortly, that the change in the
LDOS in the semichain from tight binding to many body lies
at the core of the method used in this work to estimate the
range of the Kondo cloud. One added benefit of the proce-
dure to be described below is that the physics of the Kondo
effect ar the impurity (the Kondo resonance) does not need to
be calculated with ECA for the EOM procedure to work. In
the present work, it is also calculated with FUSBMF and
NRG.

To calculate the dressed propagators at any site of the
semichain, we write down the EOM of the local propagators
at a site M. In the case of ECA, the site M must be outside
the cluster, i.e., M=L+1 (see Fig. 1). This restriction does
not apply to FUSBMF or NRG, where the equivalent to the
ECA cluster can be considered to be just the impurity. A brief
description of the EOM method can be found in Ref. 25. To
simplify the notation, in what follows we will ignore the spin
index o. The set of equations to solve, in order to calculate
Gy .m» 18 given by

Gym=80+80tGy-1 m+ 801G prs1 m» (14)
Gyrir.m = 85t Gprms (15)
Guy-1m=Guyp-1 = 80tGy—1 -1 + 8ot Grim-1»  (16)

Guret -1 = 85t Gprp-15 (17)

where go=1/w is the atomic GF at site M and g is the bare
propagator for the rest of the semichain starting at the site
M+1 and is given by

JE—
® * o?-47

27 (18)

gsc=

In Eq. (16), we used explicitly the equivalence between
Gy and Gy . This is only valid if the hopping param-
eters ¢ are real (e.g., no magnetic field inside the chain, al-
though a more general EOM, involving a magnetic field, can
also be found).

Solving this set of equations, we obtain
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+ 808o!

1- 8 ()tzgsc

- 8 Otzgsc
Note that the GF at the site M can be calculated through the
GF at M—1. Note that the equation above clearly indicates
that, to calculate the dressed GF at site M, the only many-
body information needed is the dressed GF at site M — 1. This
fact automatically defines a procedure to find the propagator
at any site in the semichain. Note that Eq. (19) is defined for
a site, within the semichain (i.e., M =2), that is connected to
both adjacent sites by a matrix element 7. Thus, this still
leaves us with the task of calculating G, ;. To calculate the
correct propagator at site 1, we have to rewrite Eqs.
(14)—(17), in order to obtain G, ; as a function of G, with-
out overlooking that the hopping between sites 0 and 1 is ¢/,
not ¢.

For FUSBMF and NRG, we start with the GF calculated
at the impurity, i.e., Gy . Using the EOM method, we calcu-
late the propagator at the first site of the chain, G, ;. Then,
using Eq. (19), the propagator G, can be calculated at any
site. The procedure for the ECA method is slightly different,
as in ECA all the dressed propagators inside the ED cluster
are calculated already within the method. Therefore, in ECA,
the EOM procedure starts at site L+ 1 (see Fig. 1), using Eq.
(19), where G, is an input from the ECA calculations. In
that case, there is no special procedure to calculate G ;.

Once Gy, is calculated for the desired site M, the LDOS
can be calculated as

8o M-1,M~-1

GM,M = (19)

0u(w) = [ Gy o], (20)
a

As we are using the same procedure to find the LDOS
away from the impurity for three very diverse numerical
methods (ECA, FUSBMF, and NRG), some explanation
about the adopted terminology is necessary, so that the same
term, with slightly different meanings, can be unambigu-
ously used throughout the paper. As explained in Fig. 1, in
ECA, cluster means a variable size finite group of sites (in-
cluding the impurity), which is exactly diagonalized and em-
bedded (as explained above). In this paper, the ECA cluster
contains up to L+1=10 sites (i.e., the impurity plus up to
L=9 tight-binding sites). For sites N=L+1, the LDOS will
be found through the EOM method, as described above. On
the other hand, an FUSBMF or an NRG cluster, given the
very nature of both methods, contains just the impurity itself
(therefore, L=0, see Fig. 1). Because of that, there is a slight
difference to the application of the EOM method to these last
two methods, viz., G; ; has to be calculated first, and then all
the other G;; are calculated by using Eq. (19) in sequence, as
explained above.

III. LOCAL DENSITY OF STATES WITHIN
THE METAL HOST

Using the FUSBMF approximation, we can obtain ana-
lytically self-consistent expressions for the GF, and then the
LDOS. The local GF is also obtainable within NRG, i.e., the
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FIG. 2. (Color online) (a)—(f) The LDOS for sites N=1, 2, 3, 4,
50, and 100 (see Fig. 1), calculated by ECA for a cluster with L
=3 (note that the impurity is located at N=0). Solid (black) curves
show the LDOS at 7=0 for Vg=—U/2, U=t, and t'=0.3r while
dashed (red) curves show results for 7> T and the same values for
V,, U, and ¢'. An imaginary part »=0.001 was used to regularize the
LDOS. Note that the LDOSs for the first three panels were calcu-
lated using ED, in contrast to the ones for the last three panels,
which were calculated using the EOM method described in the text.
The LDOS for the first three sites (N=1, 2, and 3) was also calcu-
lated with EOM and, as expected, there was a very good agreement
between the results obtained with the two different methods. Note
that the small value used for L (=3) was in order to avoid a large
number of dips in the solid curves [number of dips equals L+1;
check, for example, solid curve in panel (a)]. Nonetheless, the
qualitative form of the curves is not affected by the choice of L.

LDOS at the impurity can be found with very good accuracy,
and, as explained in Sec. II B, the GF (and therefore the
LDOS) can be calculated within the semichain that models
the noninteracting band. The same is valid for ECA, despite
the distinctions drawn above between ECA, on the one hand,
and FUSBMF and NRG, on the other hand.

In Fig. 2, we show the LDOS for several different sites
within the noninteracting semichain (N>0), calculated by
ECA. The parameters used are U=t and ['=0.1¢, and the gate
potential is set at the electron-hole symmetric point
(V,==U/2). The LDOS for sites outside the cluster were
obtained through the procedure described in Sec. II B. The
LDOS at zero temperature is shown in solid lines. In dashed
lines, for comparison, we show the LDOS when the impurity
is out of the Kondo regime (7>Tg). In order to obtain a
solution for 7> T, we use the Hubbard-I approximation,’®
which eliminates the spin correlations between the impurity
and the leads and, as a consequence, all the low-energy ex-
citations responsible for the Kondo physics. This approxima-
tion is equivalent to performing an ECA calculation where
the cluster contains just the impurity (L=0 in Fig. 1, i.e., the
atomic solution). To understand the results in Fig. 2, it is
instructive to analyze the results shown in Fig. 3, where, in
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FIG. 3. (Color online) (a) LDOS for site N=0, where the impu-
rity is located (see Fig. 1), calculated by ECA. Solid line shows
LDOS for V,==U/2, U=t, and ¢'=0.3t while in dashed lines, re-
sults are shown for 7> T and the same parameter values for V,, U,
and 7. An imaginary part v=0.001 was used to regularize the
LDOS. The dashed (black) curve displays an example of the nor-
malized Lorentzian used to convolute the data in Eq. (22). (b)
LDOS for the first and third sites of a noninteracting semichain with
bandwidth D=4¢. (c) Same as (b) but now for the second and fourth
sites.

panel (a) it is shown the LDOS at the impurity, for 7=0
[(red) solid line) and for T> Tk [(blue) dotted curve], and in
panels (b) and (c) the LDOS of the first four edge sites of an
isolated noninteracting semichain. The results shown in Fig.
2 [panels (a)—(d)] display essentially the hybridization be-
tween the LDOS of the impurity [panel (a) in Fig. 3] and the
LDOS of the sites in the semichain [panels (b) and (c) in Fig.
3], once the impurity is coupled to the semichain. The solid
(black) curve shows the LDOS for T=0 while the dashed
(red) curve shows the LDOS for T> Ty, at the first four sites
in the semichain, after it couples to the impurity. This hy-
bridization can be described in a simple way: a peak in the
LDOS of the impurity [Fig. 3(a)], centered at w),, will gen-
erate either a resonance or an antiresonance (at wp) in the
LDOS of a semichain site when the impurity couples (hy-
bridizes) to the semichain. On the one hand, a resonance
(a peak) will result if the semichain’s LDOS, in one specific
site, vanishes at w,. On the other hand, an antiresonance
(a dip) results when the site’s LDOS at w), is finite. This
resonance/antiresonance site to site oscillation effect in the
LDOS will have important consequences in the next section.
Our interest is to be able to distinguish the effect caused over
the semichain’s LDOS, far away from the impurity, by the
presence (T<Ty) or absence (T>Tg) of a resonance at the
Fermi energy (the Kondo peak) in the LDOS ar the impurity
[compare the solid and dotted curves in Fig. 3(a)]. The extent
to which this hybridization effect can spread away from the
impurity will be used as a measure of the extent of the
Kondo cloud.

Figure 2 clearly displays this kind of hybridization effect,
as described above. Indeed, if one concentrates the attention

045111-6



NUMERICAL ANALYSIS OF THE SPATIAL RANGE OF...

on the features close to the Fermi energy (w=0) in the dif-
ferent panels in Fig. 2, one sees that the difference between
the LDOS curves below Tk (solid) and above Tk (dashed) is
quite marked, and owes its origin to the presence of the
Kondo peak at the impurity below Tk. By using the Lorent-
zian shown in Fig. 3 (dashed line) to restrict ones attention to
the immediate neighborhood of the Fermi energy, by convo-
luting it with the difference between the solid and dashed
curves in Fig. 2, one expects to extract the essence of the
influence of the impurity, when in the Kondo regime, over
the Fermi sea. One can picture the change from the solid to
the dashed curve, say, in site 50 [panel (e)], as that occurring
in the LDOS away from the impurity when the temperature
is lowered below Ty. Panel (f), where there is very little
difference between both curves, shows that the impurity, in a
Kondo regime, has a spatially limited influence over the
Fermi sea. It is one of the aims of this paper to understand
how this influence depends on the sole energy scale of the
Kondo effect, i.e., the Kondo temperature Tk.

IV. CLOUD EXTENSION FUNCTION

As mentioned in Sec. I, considering that the width of the
Kondo resonance in the LDOS at the impurity, A, is propor-
tional to Tk, we expect that

Ry =~ — (21)

In this section, we will estimate the screening length Ry by
evaluating the distortion in the LDOS, produced by the
Kondo resonance at the impurity, in sites N arbitrarily far
away from the impurity. The distortion produce in site N will
be quantified by the absolute value of the function F(N), as
defined by

F(N) = f [oK(®) - N () ILA(w)dw, (22)

where of (oX") is the local density of states at the site N in
the Kondo regime (out of Kondo), and L, is the Lorentzian
distribution of width A [dashed curve in Fig. 3(a)]. Note that
the distance to the impurity is given by r=Na, where a is the
lattice parameter. To evaluate QEK, we applied the EOM pro-
cedure to the Hubbard-I solution for the impurity’s GF
[where the dotted line in Fig. 3(a) shows the negative of its
imaginary part]. It is important at this point to remind the
reader that all the calculations here were done at V,=-U/2
(i.e., at the particle-hole symmetric point).

Note that, for a site far away from the impurity, where the
many-body effects are not important, QIIfI must be equal to
oNK, thus F(N)=0. This can be seen in the last panel of Fig.
2. F(N) will be used to find a length scale beyond which the
presence of the impurity is not relevant any more. We will
call F(N) the cloud extension function. We define the exten-
sion function in this form due to several reasons. First, be-
cause this definition associates this function to the conduc-
tance, a quantity that can be experimentally measured. It is
clear that charge transport involves a local density of states
integrated over a frequency window around the Fermi level
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with a width given by the applied external bias, which can be
adjusted to be proportional to an experimental estimate of the
Kondo temperature. Regarding this point, and for the sake of
clarity, it is important to stress that the function [on(®)
—oN¥(w)], appearing in Eq. (22), is different from the quan-
tity calculated in most studies of the Kondo-cloud
problem.>%7 (In reality, this point will be expanded in detail
in the Appendix). Here, QEK corresponds to the local density
of states above the Kondo temperature, and not to the local
density of states of the system when the magnetic impurity is
removed, a situation that is not experimentally feasible.
Moreover, the Lorentzian convolution in the definition of
F(N) eliminates the trivial 1/N dependence of the Friedel
oscillations, and, in reality, the oscillations themselves, keep-
ing only the nontrivial Kondo physics. As will be shown in
the Appendix, this happens because the convolution with a
Lorentzian (which has smooth tails) removes the abrupt dis-
continuity at w=* A/2 [see Eq. (A2)], that causes the oscil-
lations. A similar role is played by temperature in any real
experimental situation, even for 7<<Tg , i.e., the same
smoothing effect played by the Lorentzian in Eq. (A2), is
played by temperature in the Fermi function in Eq. (Al):
both of them tend to suppress the Friedel oscillations. More
importantly from a conceptual point of view, as will be rig-
orously shown in this section through numerical results,?’
F(N)=F(N/Rg) is a universal function of N/Rg and con-
tains, through its exponential dependence, the information
about the extension and the simple structure of the Kondo
cloud in a 1D system. As it will be shown in the Appendix,
by substituting the Lorentzian by a square distribution [see
Eq. (A2)], with the Fermi level at the middle of the band,
monochromatic Friedel oscillations are restored, together
with the two asymptotic behaviors discussed in Ref. 8.

As already mentioned, to calculate Q,lé, we will use ECA,
FUSBMEF, and NRG. In Fig. 4(a), it is shown the absolute
value of the cloud extension function, |F(N)|, calculated with
ECA, as a function of N, for U=t¢, I'=0.1¢, and for several
values of L (note that the vertical axis has a logarithmic
scale). The scatter plots show the data obtained from Eq. (22)
for some selected values of N, for different cluster sizes L
(see legend). We find that the behavior of |F(N)|, for all
values of L used, is a decaying exponential (the correlation
factor, when fitting the curves with an exponential, was ex-
actly 1 for all values of L),

|[F(N)| = Aq exp(- N/Ry), (23)

where Rg marks the distance from the impurity where the
value of |F(N)| has fallen by 1/e, in comparison to its value
at the impurity (N=0). The solid lines in panel (a) show the
result of fitting each set of data with Eq. (23). In the inset of
Fig. 4(a), it can be observed that F(N) oscillates between
positive and negative values for successive N.?® This is a
direct consequence of the resonance/antiresonance oscilla-
tion in the LDOS discussed in the previous section. The ex-
trapolation of Ry to an “infinite” ECA cluster (1/L—0) is
explained in detail next.

As mentioned already, each curve in Fig. 4(a) (from L
=1 to L=9) is fitted using Eq. (23). Therefore, a value for
Ry(L) is found for each cluster size used in ECA (I1=L
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FIG. 4. (Color online) (a) Main panel: Absolute value of the
cloud extension function, |[F(N)|, calculated by ECA as a function of
the semichain site N for several different cluster sizes (L=1-9, in
steps of 2—see legend). The parameter values are U=t and T’
=0.1¢z. Note that L is the number of nearest-neighboring sites to the
impurity within the cluster solved exactly in ECA. The curves
shown are the data obtained through Eq. (22). Fits to these data (not
shown), for each value of L, using Eq. (23), result in exactly the
same curves as the ones shown. It is clear that the data for each
different cluster size decays exponentially with N (notice the loga-
rithmic scale in the vertical axis). The open (red) triangles curve
shows the extrapolation of |F(N)| to the thermodynamical limit, as
describe in detail in the text. The inset shows the site to site oscil-
lations of F(N), as well as the exponential decay, now with a linear
scale for the vertical axis. (b) ECA extrapolation to the thermody-
namical limit [dashed (red) curve], as described in the text, of the
Ry data [solid (black) dots] obtained from the fittings for each dif-
ferent L curve shown in panel (a), as explained in the text.

=9). Figure 4(b) shows the values obtained this way for
Ry(L) as a function of 1/L [solid (black) dots], for the dif-
ferent values of L used in panel (a). A fitting of these results
by a quadratic polynomial is also shown [dashed (red)
curve]. The intercept of the dashed (red) curve with the ver-
tical axis provides an extrapolation of Ry to the thermody-
namical limit Rg(L— ). This extrapolated value of Rg can
then be used in Eq. (23) to obtain the thermodynamical limit
for the |F(N)| curve, which, for I'/¢=0.1, is the open (red)
triangles in Fig. 4(a).?

Obviously, Eq. (23) has two free parameters, viz., A and
Ryg. Although the vertical axis in Fig. 4(a) is logarithmic,
making it difficult to judge the convergence of A, it is true
that A, converges with L faster than R (note that, in accor-
dance with Eq. (23), A, is the y intercept and Ry is the
negative of the inverse of the slope of the curves for different
cluster sizes). The values of A, for different values of L
where obtained from the fitting, of each data set in Fig. 4(a),
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FIG. 5. (Color online) Cloud extension function F(N) vs N, the
site in the semichain, for several values of I'. (a) Extrapolation to
the thermodynamical limit, calculated with ECA, for each I" value
(b) same as in (a) but calculated with FUSBMF. Note that, as T’
increases, and therefore Tk increases, the extension of the Kondo
cloud [measured by Rg(N)] decreases, reflecting the shorter range
of the Kondo effect. Note also that the dependence of |F(N)| with N,
for all I" values shown, is perfectly linear, clearly showing the uni-
versal Kondo physics behavior.

done with Eq. (23). The dependence of A, on the parameters
of the model will be discussed below.*"

At this point, it is important to note that, as the cluster
used in the FUSBMF and NRG calculations has a fixed size
(L=0), there is no extrapolation to be done to find |F(N)| for
both methods. There is only a fitting to Eq. (23) to find Rg
and Ao.

Now that we have clarified how the thermodynamical
limit value for Rk is found for each method, we want to
show how it varies with the parameters of the model. Figure
5(a) shows the extrapolated (ECA) |F(N)| curves, for U
=1.0 and different values of I' [from 0.0625 (solid (black)
curve] to 0.4 (dashed (magenta) curve). From the data, it is
clear that Rx (the negative of the inverse of the slope) de-
creases with increasing values of I'. In panel (b), the corre-
sponding |F(N)| curves obtained with FUSBMF are shown
for comparison. The overall agreement between both meth-
ods is quite good. As expected, we observe that the size of
the Kondo cloud (measured through the cloud extension
function) increases with U/I". We can understand this behav-
ior by noting that, as I' increases (with a fixed U), Tk also
increases, and Rk, as predicted by Eq. (1), decays. Finally,
we want to call attention to the fact that all the curves in Fig.
5 have the same functional form, for all values of Tk, i.e., a
decaying exponential, reflecting the universality of the
Kondo physics.

Figure 6 shows the results obtained [open dots in panels
(a), (b), and (c)] by extrapolating Rx from |F(N)| for differ-
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FIG. 6. (Color online) Range (Rg) of the Kondo cloud as a
function of A. The open dots show the results obtained for Ry
through the fitting of curves like the ones in Fig. 5 for various
values of A. (a) ECA, (b) FUSBMF, and (c) NRG results. A fixed
parameter U=t was used for the three methods, and the parameter I"
was changed in order to obtain different A values. The solid (red)
line in each panel shows the interpolation of an 1/A function, as
expected for R vs Tk (which is proportional to A). The value of the
proportionality factor for each method is shown in the respective
label.

ent values of I' (at V,=-U/2), using (a) ECA, (b) FUSBMF,
and (c) NRG. These results are plotted as a function of A,3!
which is taken as the full width at half height of the Kondo
peak for each different value of I'. We observe that the de-
pendence of the Kondo length Ry with A satisfies the rela-
tionship given by Eq. (21) (as A, the width of the Kondo
peak, is proportional to Tk). To emphasize that, each set of
data (obtained by the three different methods) was fitted by a
function «1/A [see the solid (red) line in each panel]. It is
important to stress that the proportionality coefficient be-
tween Ry and 1/A obtained by all the three different meth-
ods is very similar, i.e., Rx ~2.0/A. The proportionality fac-
tor in Eq. (21) is 1.874 for ECA, 1.964 for FUSBMF, and
2.102 for NRG. While this factor is similar for ECA and
FUSBME, there is a 10% difference between ECA and NRG.
We believe that this difference comes from the parameter b
used in NRG to broaden the logarithmic-Gaussian functions
in the LDOS, as the value of A obtained by NRG is very
sensitive to the choice of this arbitrary parameter.

Note the difference in the range of A used for the NRG
calculations when compared to ECA and FUSBMF. Tradi-
tionally, NRG is a method designed to calculate the exact
static properties of the Kondo problem, however it fails to
provide accurate dynamical properties, such as the LDOS,
away from the Fermi level. This comes from the logarithmic
discretization of the band. As a consequence, mainly for
larger Tk values, which are associated with broader Kondo
peaks, the LDOS at the wings of the Kondo peak will be
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FIG. 7. (Color online) (a) Cloud extension function F(N) as
function of N/Ry for different values of U and I'. Note that all the
results for different values of U/I lay at lines with the same slope.
The difference in the intercepts with the vertical axis come from
different values of Ay, a fact that is explained in Fig. 8. The fixed
value of the slope is due to the universality of the Kondo effect. (b)
ECA results for the size of the Kondo cloud vs 1/A for U=0.5z,
U=t, and U=1.5¢. Note that, for the interval of values of U and I
shown, Ry is exactly a linear function of 1/A, and does not depend
on the values of U and I" used.

distorted enough that it will not produce good results when
the EOM is applied. Due to this limitation, we compare the
NRG results just with the few first points calculated using
ECA and FUSBME, which are associated with lower values
of Tk. To check the universal behavior of the Kondo physics,
we evaluate the cloud extension function F(N) for several
values of U and I'. The results are shown in Fig. 7(a). The Ry
values, used in the renormalization of N, were calculated as
explained above. As expected, all the data lay at lines with
the same slope, indicative of the universal behavior of F(N),
their different vertical intercepts being related to different
values of A, [see Eq. (23)]. The two lines that deviate the
most [solid (red) and dashed (black)] do so because they
were obtained for the smaller values of U/I'. As will be
discussed in Fig. 8, for such values the system is entering in
the mixed-valence regime.

Figure 7(b) shows ECA results of Rg vs 1/A for three
different values of U (0.5, 1.0, and 1.5). As shown in the
figure, the functional form Rk o< 1/A is valid for the intervals
of U and A (and therefore I') inside which the calculations
were done. More importantly, as all the curves collapse to a
single line, the proportionality coefficient is also independent
of these intervals. This indicate that the “propagation” of the
Kondo effect into the leads (which is essentially measured by
Ry) depends only on the weight of the Kondo resonance at
the Fermi level (measured by A).

We want to stress again that the independence of Rg vs A
with U, observed in Fig. 7(b), reflects the fact that the Kondo
physics depends only upon one relevant magnitude, the
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FIG. 8. (Color online) Parameter A as a function of A (in log
scale) calculated by ECA and FUSBME. Different U, where used
for ECA. Note that, when A is small, all curves coincide, as ex-
pected, in view of the universal behavior characteristic of a Kondo
system. Increasing A, we enter in the mixed-valence regime, and
curves for different values of U start to diverge.

Kondo temperature. In addition, one should note that, by
definition, F(N) is zero in the absence of interactions
(U=0). In which case, Q{f, and QEK are both exact and equal,
and therefore the integrand in Eq. (22) vanishes. This implies
that the behavior shown in Fig. 7(b) is related to many-body
interactions, i.e., Kondo physics.

Figure 8 shows, for ECA and FUSBMEF, the parameter A,
as a function of A. We can see that, the ECA and FUSBMF
curves agree quite well, for the same value U=1.0. Addi-
tional calculations, with different U values (U=0.5 and U
=1.5), were done just with ECA. For these additional results,
one sees that the curves start to differ from each other for
large A but agree for small values (A <0.04). The agreement
for small A can be easily understood if one takes in account
the universal behavior of the Kondo effect, in the sense that
it is determined by a single energy scale, the Kondo tempera-
ture Tx. Therefore, A (as Rg) does not depend on either U or
I' independently but on their ratio (U/I), at least until the
system enters the mixed-valence regime, at higher A (equiva-
lent to I'). Notice that the curve for lower U (U=0.5) starts
to diverge from the other two at a lower value of A (propor-
tional to I') while the opposite occurs for the larger-U
curve.?8

V. CONCLUSIONS

Using the LDOS within the metal lead, we have estimated
the effective length, in real space, of the effect of the many-
body correlations originating at the impurity site. For the
Kondo effect, we defined a cloud extension function F(N) in
order to estimate when an electron located at a site N, away
from the impurity, is not affected anymore by its presence.

Indeed, we have used the electronic properties reflected in
the LDOS function (charge spectra) of the one-dimensional
metallic lead, to study the spatial propagation of the Kondo
effect away from the magnetic impurity. The length of the
Kondo cloud, Rk, has been defined in the literature to be the
extension of the spin-screening cloud, formed by the conduc-
tion electrons, in the vicinity of the impurity. From this point
of view, it is essentially the spatial size of a magnetic prop-
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erty, as it is associated to the spin-spin correlations between
the local impurity and the conduction-electron spins.'3 How-
ever, here we claim that, as far as the Kondo cloud is con-
cerned, the charge spectra counterpart of the Kondo physics
(defined as the effect of the impurity’s Kondo peak over the
LDOS of the leads) is equivalent to its magnetic expression,
as they are both manifestations of the same physical phe-
nomenon. Moreover, we claim that |F (N)|, being dependent
just on the LDOS, is easier to calculate and measure than
spin-correlation-based functions.

As far as transport properties are concerned, if the Kondo
effect is thought to be the way in which two or more QDs
can interfere, the relevant way of studying the Kondo cloud
is by analyzing the effect of the impurity over the LDOS of
the rest of the system.

In order to study the spatial propagation of the Kondo
effect, we define what we call a cloud extension function,
denoted F(N) [see Eq. (22)], and show that it is an universal
function of the variable N/R,. It measures, in an interval of
width Tk around the Fermi energy, the distortion of the
LDOS, at site N, created by a Kondo impurity sitting at the
origin, for a one-dimensional configuration.

One important feature of F(N), besides its universal char-
acter, is that, through the Lorentzian distribution, the Friedel
oscillations, and its associated trivial 1/N dependence con-
tained in the density, are eliminated, and just the relevant
physics due to the Kondo effect survives (see Appendix).

We evaluated function F(N) using three totally different
formalisms, ECA, FUSBMEF, and NRG, and obtained almost
identical results for the variation in Rk with the parameters
of the system. The fact that three different formalisms pro-
vide the same physical description makes this study quite
robust and reliable. We demonstrate, as well, that the length
of the Kondo cloud is controlled by the unique, scaling in-
variant, relevant parameter of the Kondo effect, the Kondo
temperature Tx. These results permit a very accurate deter-
mination of the functional form of Rg(Tk), in agreement
with intuitive ideas, summarized in Eq. (1).

Recently, Holzner et al., using DMRG, have calculated
the spin-spin correlations involved in the formation of the
Kondo cloud in a one-dimensional system. They found that
the dependence of the range of the Kondo cloud with the
Kondo temperature agrees with our results shown in Fig. 6.3
We direct the reader to this reference for information on
additional works that use spin-spin correlations to determine
the properties of the Kondo cloud.

Finally, it is important to emphasize that the measurement
of spin-spin correlations between different sites, in a real
STM experiment, is difficult to perform, as the use of two
different STM tips, at the same time, is required.>> On the
other hand, the mapping of the Kondo cloud through the
difference in the conductance, measured by an STM tip, at
different points in a 1D system, looks more feasible, as it has
already been performed in metallic surfaces.'”
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F. Heidrich-Meisner. E.V.A. thanks the Brazilian agencies
FAPERJ, CNPq (CIAM project), and CAPES for financial
support. G.B.M. and C.A.B. acknowledge support from NSF
under Grant No. DMR-0710529. E.D. is supported by the
NSF under Grant No. DMR-0706020 and the Division of
Materials Sciences and Engineering, Office of Basic Energy
Sciences, U.S. Department of Energy. E.V. acknowledges
support from CNPq (CIAM project).

APPENDIX: FRIEDEL OSCILLATIONS

In this section, we discuss the effect of the Friedel oscil-
lations in the charge density and how they are related to the
extension function F(X) defined in this work. Following Af-
fleck et al.® and Bergmann,'? the local charge per spin on site
N can be defined as

P(N)=%J flo - EgDIm[Gyy(0)ldo, (A1)

where f(w,T) is the Fermi distribution.

It can be shown that the difference p(N)—py(N) in the
local charge on site N, between when the impurity is present
[p(N)] and when it is not [py(N)], at T=0, displays the so-
called Friedel oscillations, with a wavelength associated to
the Fermi wave vector.®33 In the equation above, these oscil-
lations come from integrating the step Fermi distribution at
T=0. Effectively, by performing the integration at finite 7,
the oscillations are eliminated.

The envelope of this difference (look inset of Fig. 1 in
Ref. 8) presents two asymptotic regimes: (i) far away from
the impurity, for electrons out of the Kondo cloud, just the
Friedel oscillations remain and the envelope decays as «1/N
(this is obtained as a direct consequence of Fermi-liquid
theory). (ii) Close to the impurity, on the other hand, where
the effect of the Kondo physics is relevant, the envelope
function of the local charge behaves as 1-bw/
[In?(cRg/N)], where b and c are constants of order 1 (this
can be obtained from a weak-coupling theory).
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FIG. 10. (Color online) (a) Envelope of |F*(N)| calculated for
different values of T". (b) By rescaling N as (N+1)/Rk it can be
shown that all the curves have the same asymptotic limit *xa/N
when N>Ry and B—yN%> when N<Ry. Note that the Ry values
used in the renormalization were calculated in Sec. IV through
F(N), i.e., including a Lorentzian distribution. The values obtained
from the fittings were a=0.3059, B=1.54104, and y=1.54104.

To compare our results with those for the local charge, as
calculated in Refs. 8 and 10, we proceed as follows. In order
to obtain the Friedel oscillations, we replace the Lorentzian
distribution used in Eq. (22) by a step function. We define
then a new extension function as

F*(N)= J i[fo(w —A2) = folw+ A/2)]

x[oR() — ox¥(0)Jdw, (A2)

where f;(x) is the step function with value 1 for x<<0 and 0
for x> 0. Note that this new definition is equivalent to that in
Eq. (22), as the only difference is that the Lorentzian distri-
bution was replaced by a normalized square function of
width A.

In Fig. 9, the magnitude of F*(N) [dashed (blue) line] for
I'=0.1 is shown.** First, we observe that the mere change in
the function used to convolute the integral (from Lorentzian
to square function) results in the appearance of the charac-
teristic Friedel oscillations discussed previously. The enve-
lope of this function is obtained as F*(N)/sin(A\¢(N+ o),
where A\, and ¢ are, respectively, the characteristic wave-
length and phase, obtained numerically. The solid (red) line
shows the envelope obtained. In the inset, the two asymptotic
regimes for this function can be observed. For large N, the
function decays as «1/N, as expected, as only the Friedel
oscillations survive. At short range, close to the impurity, we
find that the asymptote behaves as OC\W, due to the nontrivial
Kondo physics.

In Fig. 10(a), we show the envelope of |F*(N)| for several
values of I'. Rescaling this function, by changing the inde-
pendent variable from N (site position away from the impu-
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rity) to (N+1)/Rg [where Rg was found as described in Sec.
IV, using F(N) with a Lorentzian distribution], we observe
that for either long distances, i.e., outside the Kondo cloud,
where the Friedel oscillations dominate, and inside the
Kondo cloud, where Kondo physics dominates, the behavior
of |F*(N)| is universal. This result is shown in Fig. 10(b). In
the rescaling used in Fig. 10, we have translated the data by
one site because that way the universality is more perfectly
achieved. Although there is a certain degree of arbitrariness
in setting the spatial origin of our system, we emphasize that,
for the sake of our argument here, this difference is com-

PHYSICAL REVIEW B 81, 045111 (2010)

pletely irrelevant in the most important region, i.e., where the
Crossover occurs.

In conclusion, as shown in this appendix, the Friedel os-
cillations can be eliminated if, instead of using the step func-
tion as defined in Eq. (A2), we use Fermi distributions with
temperature Ty, where it is the smoothness of the distribution
at the edges that eliminates the oscillations seen in Fig. 9
[dashed (blue) curve]. For the same reason, when we use a
Lorentzian distribution, the Friedel oscillations are elimi-
nated, and the only remaining effect, inside the Kondo cloud,
is the one produced by the Kondo physics.
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